(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 2488 Roll No.

B.Tech.

(SEM. VI) EVEN THEORY EXAMINATION 2012-13 DIGITAL SIGNAL PROCESSING

Time: 3 Hours Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

Assume missing data suitably if any.

- 1. Attempt any two parts of the following: (2×10=20)
 - (a) Discuss the importance of realization of digital system. Find the system function of the system shown in following figure 1.

Figure 1

(b) Discuss the advantages of ladder form of realization. Find the ladder form of realization of the system function given by:

$$H(z) = \frac{4}{2z^{-3} + 2z^{-2} + z^{-1} + 4}$$

(c) Give two different realizations of the system described by system function:

$$H(z) = \frac{1}{2} + \frac{1}{4}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{2}z^{-3}$$

and compare them.

- Attempt any two parts of the following: $(2\times10=20)$
 - (a) Compare FIR and IIR filters. For the analog transfer function given below:

Ha(s) =
$$\frac{2s^2 + 3s + 3}{(s+1)(s^2 + 2s + 2)}$$

apply impulse invariant technique to find out the corresponding system function of digital filter with sampling rate 1s and 0.1s.

Design Butterworth Low Pass filter using bilinear transformation; the frequency characteristics are given below:

$$0.85 \le |H(e^{j\omega})| \le 1$$
 $0 \le \omega \le 0.2 \pi$
 $|H(e^{j\omega})| \le 0.5$ $0.6 \le \omega \le \pi$

- Compare the characteristics of Butterworth and Chebyshev filter. Determine the parameters of a Chebyshev filter for which $A_1 = 1/2^{1/2}$, $A_2 = 0.1$, $\Omega_1 = 2$ rad/s and $\Omega_2 = 4$ rad/s.
- Attempt any two parts of the following: $(2\times10=20)$
 - Shown that a FIR filter will have linear phase if its unit sample response satisfies $h(n) = \pm h (N-1-n)$.

- What are different methods for design of FIR Filter? Explain Gibb's phenomenon with mathematical expression.
- (c) Show that for a low pass linear phase FIR Filter:

$$hd(n) = \frac{\sin \omega_{c}(n-\tau)}{\pi(n-\tau)} ; n \neq \tau$$
$$= \omega_{c}/\pi \qquad n = \tau$$

and
$$\tau = \frac{N-1}{2}$$
.

- Attempt any two parts of the following: $(2\times10=20)$
 - (a) Show that: -

$$1DFT\{\widetilde{\mathbf{x}}(\mathbf{k}\cdot\mathbf{m})\} = \mathbf{W}_{N}^{-mn} DFT\{\widetilde{\mathbf{x}}(\mathbf{x})\}$$

(b) Find linear convolution of sequences:

$$x_1(n) = \begin{cases} 1 & 0 \le n \le 2 \\ 0 & \text{otherwise} \end{cases}$$

$$x_2(n) = \begin{cases} 2^{-n} & 0 \le n \le 3 \\ 0 & \text{otherwise} \end{cases}$$

(c) Show that:

$$DFT\left\{\sum_{m=0}^{N-1}x(m)y(m-n)\right\}=X(k)*Y(k)$$

- 5. Attempt any two parts of the following: (2×10=20)
 - (a) What do you mean by FFT? Explain DIT and DIF. Deduce the equation for DIT algorithm for N = 4 and draw the signal flow graph.
 - (b) Show that the output data is in bit reversed order for decimation in frequency algorithm for N = 8.
 - (c) Develop a DIT FFT algorithm using 4 part DFTs for N = 4".